# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" cohort = "GSE230164" # Input paths in_trait_dir = "../DATA/GEO/Asthma" in_cohort_dir = "../DATA/GEO/Asthma/GSE230164" # Output paths out_data_file = "./output/preprocess/1/Asthma/GSE230164.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE230164.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE230164.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is likely available is_gene_available = True # Based on the title "Gene expression profiling of asthma" # Step 2: Identify the rows for trait, age, and gender # From the provided sample characteristics dictionary (only key 0 with gender info), # we see no mention of the trait (asthma) or age, so these are not available. trait_row = None age_row = None gender_row = 0 # "gender: female" and "gender: male" are present # Data type conversion functions def convert_trait(value: str) -> Optional[int]: """ Convert trait values to binary (e.g., 'asthma' -> 1, 'control' or 'healthy' -> 0). Returns None if unknown. """ # Extract the actual data after the colon if present parts = value.split(':', 1) val = parts[1].strip().lower() if len(parts) > 1 else value.lower() # Example mapping (if we had trait data) if 'asthma' in val: return 1 if 'control' in val or 'healthy' in val: return 0 return None def convert_age(value: str) -> Optional[float]: """ Convert age values to continuous floats. Returns None if parsing fails or data is unknown. """ parts = value.split(':', 1) val = parts[1].strip() if len(parts) > 1 else value try: return float(val) except ValueError: return None def convert_gender(value: str) -> Optional[int]: """ Convert gender to binary (female -> 0, male -> 1). Returns None if unknown. """ parts = value.split(':', 1) val = parts[1].strip().lower() if len(parts) > 1 else value.lower() if 'female' in val: return 0 if 'male' in val: return 1 return None # Step 3: Initial filtering and saving of metadata is_trait_available = trait_row is not None dataset_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Since trait_row is None, we skip substep of clinical feature extraction # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the given identifiers (e.g., ILMN_1651199), these appear to be Illumina probe IDs # rather than standard human gene symbols. Therefore, gene symbol mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the gene annotation dataframe # - "ID" column contains Illumina probe IDs matching those in the expression data # - "Symbol" column contains the gene symbols prob_col = 'ID' gene_col = 'Symbol' # 2. Get a gene mapping dataframe by extracting the two columns mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Since 'trait_row' was None, no clinical feature extraction occurred and trait data is unavailable. # We must skip linking and final data prep steps and directly do final validation to record that this dataset is unusable for trait-based analysis. empty_df = pd.DataFrame() # Placeholder, as df must be provided to the validation function is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # No trait data was found is_biased=True, # Arbitrary True to pass validation, making the dataset not usable df=empty_df, note="Trait data is unavailable; skipping linking and final data steps." ) print("Trait data unavailable. Skipping linking and final data output.")