# Path Configuration from tools.preprocess import * # Processing context trait = "Asthma" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Asthma/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Asthma/cohort_info.json" import os # Step 1: Identify subdirectory that might relate to "Asthma" subdirs = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] # Since we're looking for "Asthma" and no subdirectory name suggests an asthma-related cancer, # no suitable subdirectory is found. suitable_subdir = None # Confirm no matching subdirectory for sd in subdirs: # Normally, you'd check synonyms for "Asthma" if needed. if "asthma" in sd.lower(): suitable_subdir = sd break # If not found, skip the trait: if not suitable_subdir: print("No suitable subdirectory found for trait 'Asthma'. Skipping this trait.") # Mark as completed but unavailable in metadata validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # (Would proceed to load data if a matching subdirectory was found.) pass