# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE115574" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE115574" # Output paths out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE115574.csv" out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE115574.csv" out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE115574.csv" json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The series title and summary indicate "gene expression microarrays" were used # 2. Variable Availability and Data Type Conversion # 2.1 Identify rows for trait, age, gender. # Examining the provided dictionary: # {0: ['disease state: atrial fibrillation patient with severe mitral regurgitation', # 'disease state: sinus rhythm patient with severe mitral regurgitation'], # 1: ['tissue: left atrium - heart', 'tissue: right atrium - heart']} # Row 0 has multiple unique values related to AF vs. sinus rhythm. trait_row = 0 age_row = None # No row provides age info gender_row = None # No row provides gender info # 2.2 Define conversion functions def convert_trait(value: str) -> int: """Convert trait info to a binary indicator: AF=1, otherwise=0.""" # Extract the part after the first colon parts = value.split(':', 1) raw_str = parts[1].strip().lower() if len(parts) > 1 else value.lower() if 'atrial fibrillation' in raw_str: return 1 elif 'sinus rhythm' in raw_str: return 0 else: return None def convert_age(value: str) -> float: """Unused here because age_row is None, but define a placeholder.""" return None def convert_gender(value: str) -> int: """Unused here because gender_row is None, but define a placeholder.""" return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_features = geo_select_clinical_features( clinical_df=clinical_data, # Assumes 'clinical_data' DataFrame is already in environment trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected features preview_dict = preview_df(selected_features, n=5, max_items=200) print("Clinical Features Preview:", preview_dict) # Save the extracted clinical features selected_features.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the probe IDs (e.g. '1007_s_at', '1053_at'), these are Affymetrix probe identifiers # which require mapping to official gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the columns for the probe IDs and gene symbols in the annotation dataframe. # In this dataset, they are stored in 'ID' and 'Gene Symbol'. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3. Convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Print the dimensions and the first 10 gene symbols to confirm print("Mapped gene_data shape:", gene_data.shape) print("First 10 gene symbols:", gene_data.index[:10]) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_features, normalized_gene_data) # 3. Handle missing values systematically linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)