# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE143924" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE143924" # Output paths out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE143924.csv" out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE143924.csv" out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE143924.csv" json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) ############################ # 1. Gene Expression Data Availability ############################ is_gene_available = True # Based on "Whole-tissue gene expression patterns" in the series summary ############################ # 2. Variable Availability and Data Type Conversion ############################ # From the sample characteristics dictionary: # {0: ['tissue: epicardial adipose tissue'], # 1: ['patient diagnosis: sinus rhythm after surgery', # 'patient diagnosis: postoperative atrial fibrillation after surgery (POAF)']} # The trait "Atrial_Fibrillation" can be inferred from row 1 since it contains # "sinus rhythm after surgery" vs. "postoperative atrial fibrillation after surgery (POAF)". trait_row = 1 # There's no mention of age or gender information in the dictionary, # thus they are considered not available. age_row = None gender_row = None # Data Type Conversions def convert_trait(value: str) -> Optional[int]: # Extract the value after the colon parts = value.split(':', 1) val_str = parts[1].strip() if len(parts) > 1 else value.strip() # Map recognized patterns to 0 or 1 if val_str.lower() == 'sinus rhythm after surgery': return 0 elif 'postoperative atrial fibrillation' in val_str.lower(): return 1 else: return None def convert_age(value: str) -> Optional[float]: # No age data is truly available here; returning None return None def convert_gender(value: str) -> Optional[int]: # No gender data is truly available here; returning None return None ############################ # 3. Save Metadata (Initial Filtering) ############################ is_trait_available = trait_row is not None is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) ############################ # 4. Clinical Feature Extraction ############################ if trait_row is not None: # Suppose clinical_data is our input DataFrame of sample characteristics selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview = preview_df(selected_clinical, n=5) print("Selected Clinical Features Preview:", preview) # Save the selected clinical data selected_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on biomedical knowledge, the listed gene identifiers appear to be recognized human gene symbols. # Therefore, they do not require additional gene symbol mapping. print("requires_gene_mapping = False") # STEP5 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Replace "selected_clinical_df" with the correct variable "selected_clinical" linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 3. Handle missing values systematically linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)