# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE41177" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE41177" # Output paths out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE41177.csv" out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE41177.csv" out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE41177.csv" json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # From the background stating "microarray analysis revealed ...", indicating gene expression data. # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Atrial_Fibrillation): All patients have AF (persistent AF), so there's no variation (constant). Hence, not available. trait_row = None # Age: Multiple unique age values are found in row 2. age_row = 2 # Gender: Multiple unique gender values are found in row 1. gender_row = 1 # 2.2 Data Type Conversion def convert_trait(x: str) -> Optional[int]: """ Convert any given value of the trait 'Atrial_Fibrillation' to a binary value. However, here it's not used because trait_row is None for this dataset (constant trait). Example logic shown for completeness. """ if not x or ':' not in x: return None # If data indicated presence of AF, assign 1, otherwise 0. # (In this dataset, it's constant, so this function is effectively unused.) return 1 def convert_age(x: str) -> Optional[float]: """ Convert age string 'age: XXY' to a float. If unknown, return None. """ if not x or ':' not in x: return None value = x.split(':', 1)[1].strip() # e.g. "62Y" value = value.replace('Y', '').strip() if not value.isdigit(): return None return float(value) def convert_gender(x: str) -> Optional[int]: """ Convert gender string 'gender: male/female' to a binary value: female -> 0 male -> 1 If unknown, return None. """ if not x or ':' not in x: return None gender_str = x.split(':', 1)[1].strip().lower() if 'female' in gender_str: return 0 if 'male' in gender_str: return 1 return None # 3. Save Metadata (Initial filtering) # Trait data is not available if trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip if trait_row is None. if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait="Atrial_Fibrillation", trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview preview = preview_df(selected_clinical_df, n=5) print("Preview of Selected Clinical Features:", preview) # Save selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., "1007_s_at", "1053_at") are Affymetrix probe IDs rather than standard human gene symbols. # Hence, we conclude that the data requires gene symbol mapping. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the relevant columns in the annotation dataframe: # - 'ID' holds the same identifiers as gene_data.index (e.g., "1007_s_at") # - 'Gene Symbol' holds the gene symbols. # 2. Extract mapping columns: mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 3. Convert probe-level measurements to gene-level expression data: gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP7 import pandas as pd # Since trait_row is None, we have no clinical data to link. According to the instructions, we skip linking # and other steps requiring the trait. We only normalize and save gene data, then perform final validation # to mark this dataset as not usable (due to missing trait data). # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Final quality validation and metadata saving (trait not available). # Since is_final=True, we must provide dummy values for 'df' and 'is_biased'. empty_df = pd.DataFrame() # Placeholder DataFrame is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Gene data is available is_trait_available=False, # Trait data is not available is_biased=True, # Mark as biased/unusable since we're missing core trait data df=empty_df, # Passing an empty df to satisfy function signature note="No trait data available, skipping clinical linkage. Gene data extracted only." ) # 3. Since the dataset is not usable, we do not proceed with saving any final linked data.