# Path Configuration from tools.preprocess import * # Processing context trait = "Atrial_Fibrillation" cohort = "GSE47727" # Input paths in_trait_dir = "../DATA/GEO/Atrial_Fibrillation" in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE47727" # Output paths out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE47727.csv" out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE47727.csv" out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE47727.csv" json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # The platform (HumanHT-12 V3.0) indicates a typical gene expression microarray # 2. Variable Availability trait_row = None # No row found containing AF or any case/control labels age_row = 0 # Key 0 has multiple unique values for age gender_row = 1 # Key 1 has at least two distinct values (male/female) # 2.2 Data Type Conversion def convert_trait(value: str): """ Convert the trait value to a binary indicator (0 or 1). This dataset has no trait info, so we'll implement a placeholder function. """ # Normally, we'd parse after the colon and map "AF" -> 1, "control" -> 0, else None return None def convert_age(value: str): """ Convert the 'age (yrs)' string to a float. Returns None if the format is unexpected. """ try: # Split at the colon, take the part after the colon, strip, and convert to float parts = value.split(':') if len(parts) < 2: return None return float(parts[1].strip()) except: return None def convert_gender(value: str): """ Convert gender to binary: female -> 0, male -> 1. Returns None if the format is unexpected. """ parts = value.split(':') if len(parts) < 2: return None gender_str = parts[1].strip().lower() if gender_str == 'female': return 0 elif gender_str == 'male': return 1 else: return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip this step because trait_row is None (no trait data available) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The IDs (e.g., "ILMN_1343291") appear to be Illumina probe IDs, not standard human gene symbols. # Therefore, this data requires mapping to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in gene_annotation that match the probe IDs from gene_data (the 'ID' column), # and the column that holds gene symbols (the 'Symbol' column). mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 2. Convert probe-level measurements to gene-level measurements. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print some basic info for verification. print("Mapped gene_data shape:", gene_data.shape) print("First 20 gene symbols after mapping:") print(gene_data.index[:20])