# Path Configuration from tools.preprocess import * # Processing context trait = "Autoinflammatory_Disorders" cohort = "GSE43553" # Input paths in_trait_dir = "../DATA/GEO/Autoinflammatory_Disorders" in_cohort_dir = "../DATA/GEO/Autoinflammatory_Disorders/GSE43553" # Output paths out_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/GSE43553.csv" out_gene_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/gene_data/GSE43553.csv" out_clinical_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/clinical_data/GSE43553.csv" json_path = "./output/preprocess/1/Autoinflammatory_Disorders/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import pandas as pd import numpy as np # 1. Gene Expression Data Availability is_gene_available = True # Based on microarray-based gene expression profiling in the background info # 2. Variable Availability and Data Type Conversion # Examining the sample characteristics dictionary, we see "disease state: CAPS" and # "disease state: other autoinflammatory disease" in key=3, which vary across samples # (not a constant feature). Hence, we'll use key=3 for our trait. trait_row = 3 age_row = None # No age information found gender_row = None # No gender information found # Define the conversion functions def convert_trait(value: str) -> int: if not isinstance(value, str) or pd.isna(value): return None parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() if 'caps' in val or 'other autoinflammatory disease' in val: return 1 # Otherwise, assume 0 (e.g., healthy or not the target condition) return 0 convert_age = None convert_gender = None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Proceed only if trait_row is not None. if is_trait_available: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the resulting DataFrame print(preview_df(selected_clinical_df, n=5)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the gene annotation that match the probe IDs in the gene expression data ("ID") # and the column that stores the gene symbols ("Gene Symbol"). prob_col = 'ID' gene_col = 'Gene Symbol' # 2. Extract a gene mapping dataframe with the probe column and the gene symbol column. mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) # 3. Convert probe-level measurements to gene expression data by applying the gene mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Preview a few rows of the mapped gene expression data print("Preview of gene_data after mapping:") print(gene_data.head(5)) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual trait name linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)