# Path Configuration from tools.preprocess import * # Processing context trait = "Autoinflammatory_Disorders" cohort = "GSE80060" # Input paths in_trait_dir = "../DATA/GEO/Autoinflammatory_Disorders" in_cohort_dir = "../DATA/GEO/Autoinflammatory_Disorders/GSE80060" # Output paths out_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/GSE80060.csv" out_gene_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/gene_data/GSE80060.csv" out_clinical_data_file = "./output/preprocess/1/Autoinflammatory_Disorders/clinical_data/GSE80060.csv" json_path = "./output/preprocess/1/Autoinflammatory_Disorders/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine whether this dataset likely contains gene expression data is_gene_available = True # Based on the title "Gene expression data of whole blood..." # Step 2.1: Identify data availability for trait, age, and gender trait_row = 1 # "disease status: SJIA" vs "disease status: Healthy" age_row = None # No age info found gender_row = None # No gender info found # Step 2.2: Define data type conversions def convert_trait(value: str): # Extract the substring after the colon parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip().lower() # Map SJIA -> 1, Healthy -> 0 if val == 'sjia': return 1 elif val == 'healthy': return 0 else: return None def convert_age(value: str): # No age data; return None return None def convert_gender(value: str): # No gender data; return None return None # Step 3: Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical feature extraction if trait_row is not None if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait='Disease Status', trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical data preview = preview_df(selected_clinical_df) print("Selected Clinical Data Preview:", preview) # Save extracted clinical features selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers appear to be Affymetrix probe IDs rather than standard human gene symbols. # Therefore, they require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in gene_annotation that correspond to the probe IDs and the gene symbols. # From the preview, the "ID" column matches the probe identifiers in the gene_data index, # and the "Gene Symbol" column contains the gene symbols. probe_col = "ID" gene_symbol_col = "Gene Symbol" # 2. Get a gene mapping dataframe from the annotation. mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) # 3. Convert probe-level data to gene-level data using the mapping, dividing probe expression among multiple genes. gene_data = apply_gene_mapping(gene_data, mapping_df) # For verification, print a small preview of the resulting gene expression dataframe. print("Preview of Gene Expression Data (first few genes):") print(preview_df(gene_data, n=5)) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically (note the trait column name matches the clinical data's "Disease Status") linked_data_processed = handle_missing_values(linked_data, trait_col="Disease Status") # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, "Disease Status") # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)