# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" cohort = "GSE107754" # Input paths in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer" in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE107754" # Output paths out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/GSE107754.csv" out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/GSE107754.csv" out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/GSE107754.csv" json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import pandas as pd # 1) Determine gene expression data availability is_gene_available = True # The summary indicates "Whole human genome gene expression microarrays" # 2) Variable Availability and Data Type Conversion # After reviewing the sample characteristics: # - trait_row (for Bile_Duct_Cancer) is 2, because "tissue: Bile duct cancer" appears among various tissues. # - age_row is None, no age information found. # - gender_row is 0, as "gender: Male" and "gender: Female" appear there. trait_row = 2 age_row = None gender_row = 0 # Conversion functions def convert_trait(x: str): parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # Binary conversion: 1 if it's Bile duct cancer, 0 otherwise return 1 if val == 'bile duct cancer' else 0 def convert_age(x: str): # Age data not available, return None return None def convert_gender(x: str): parts = x.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() if val == 'male': return 1 elif val == 'female': return 0 return None # 3) Save Metadata (initial filtering) # trait data is available (trait_row is not None) => is_trait_available = True is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only do this step if trait_row is not None) if trait_row is not None: # Suppose the clinical_data dataframe is already loaded in the environment clinical_features_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview_result = preview_df(clinical_features_df, n=5) print("Clinical Features Preview:", preview_result) # Save clinical data clinical_features_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on review, these identifiers (e.g., A_23_P100001) appear to be microarray probe set IDs, # not standard human gene symbols, hence gene mapping is required. print("\nrequires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Identify the columns in the annotation dataframe that match the IDs in the gene expression data # and which store the human gene symbols. In this case, "ID" matches "A_23_P..." probe IDs, # and "GENE_SYMBOL" stores the actual gene symbols. # 2) Extract the mapping between these columns into a separate dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # 3) Convert probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional demonstration) Print shape or a small snippet to verify print("Mapped gene_data shape:", gene_data.shape) print("First few gene symbols in the mapped gene_data index:") print(gene_data.index[:10].tolist()) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data # Use the correct variable name from previous steps: "clinical_features_df" linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data) # 3. Handle missing values systematically using the actual trait name linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)