# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json" import os import pandas as pd # Step 1: Check directories in tcga_root_dir for anything relevant to "Bile_Duct_Cancer" search_terms = ["bile_duct", "bileduct", "chol"] dir_list = os.listdir(tcga_root_dir) matching_dir = None for d in dir_list: d_lower = d.lower() if any(term in d_lower for term in search_terms): # Found a match, select this directory matching_dir = d break if matching_dir is None: # No matching directory found. Mark the dataset as skipped. validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # 2. Identify the clinicalMatrix and PANCAN files cohort_dir = os.path.join(tcga_root_dir, matching_dir) clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load both data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print the column names of the clinical data print("Clinical Data Columns:") print(clinical_df.columns.tolist()) # Identify candidate demographic columns candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"] candidate_gender_cols = ["gender"] # Extract the columns and preview them age_cols_in_data = [col for col in candidate_age_cols if col in clinical_df.columns] gender_cols_in_data = [col for col in candidate_gender_cols if col in clinical_df.columns] if age_cols_in_data: age_preview_df = clinical_df[age_cols_in_data] print("Age Data Preview:", preview_df(age_preview_df, n=5)) else: print("Age Data Preview:", {}) if gender_cols_in_data: gender_preview_df = clinical_df[gender_cols_in_data] print("Gender Data Preview:", preview_df(gender_preview_df, n=5)) else: print("Gender Data Preview:", {}) # Based on inspection of the supplied previews, we select "age_at_initial_pathologic_diagnosis" for age # (as it directly represents age in years) and "gender" for gender. age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" print("Chosen Age Column:", age_col) print("Chosen Gender Column:", gender_col) # 1) Extract and standardize clinical features (trait, age, gender) from the TCGA data selected_clinical_df = tcga_select_clinical_features( clinical_df=clinical_df, trait=trait, age_col=age_col, gender_col=gender_col ) # 2) Normalize gene symbols in the gene expression data genetic_df_normalized = normalize_gene_symbols_in_index(genetic_df) genetic_df_normalized.to_csv(out_gene_data_file) # 3) Link clinical and genetic data on sample IDs gene_expr_t = genetic_df_normalized.T linked_data = selected_clinical_df.join(gene_expr_t, how='inner') # 4) Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 5) Determine whether the trait and some demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6) Validate and save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Prostate Cancer data from TCGA." ) # 7) If usable, save the final linked data, including clinical and genetic features if is_usable: linked_data.to_csv(out_data_file) # Save clinical subset if present clinical_cols = [col for col in [trait, "Age", "Gender"] if col in linked_data.columns] if clinical_cols: linked_data[clinical_cols].to_csv(out_clinical_data_file)