# Path Configuration from tools.preprocess import * # Processing context trait = "Bone_Density" cohort = "GSE56815" # Input paths in_trait_dir = "../DATA/GEO/Bone_Density" in_cohort_dir = "../DATA/GEO/Bone_Density/GSE56815" # Output paths out_data_file = "./output/preprocess/1/Bone_Density/GSE56815.csv" out_gene_data_file = "./output/preprocess/1/Bone_Density/gene_data/GSE56815.csv" out_clinical_data_file = "./output/preprocess/1/Bone_Density/clinical_data/GSE56815.csv" json_path = "./output/preprocess/1/Bone_Density/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # based on "Gene expression study" in the background info # 2. Variable Availability and Data Type Conversion # From the sample characteristics dictionary: # 0 -> ['gender: Female'] # 1 -> ['bone mineral density: high BMD', 'bone mineral density: low BMD'] # 2 -> ['state: postmenopausal', 'state: premenopausal'] # 3 -> ['cell type: monocytes'] # # Trait of interest in this context is "Bone_Density". We see it's recorded under key=1 as "bone mineral density: high BMD" or "bone mineral density: low BMD". trait_row = 1 # multiple unique values ("high BMD", "low BMD"), so it's available # There's no numeric age data, so age is not available age_row = None # Gender is always female under key=0, which means it's constant and not useful for further analysis gender_row = None def convert_trait(value: str) -> int: # Typical format: "bone mineral density: high BMD" or "bone mineral density: low BMD" # Extract the portion after the colon parts = value.split(':', 1) val = parts[1].strip() if len(parts) > 1 else value.strip() if val.lower() == 'high bmd': return 1 elif val.lower() == 'low bmd': return 0 else: return None def convert_age(value: str): return None # No age data available def convert_gender(value: str): return None # Not used, as gender is constant in this dataset # 3. Save Metadata with initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None -> data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, # assumed to be available in the environment trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These gene identifiers (e.g., "1007_s_at", "1053_at") are Affymetrix probe set IDs, # which are not standard human gene symbols. Therefore, they require mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. From our observation, the 'ID' column in gene_annotation matches the probe identifiers in the gene_data, # and the 'Gene Symbol' column contains the actual gene symbols we need. probe_col = "ID" symbol_col = "Gene Symbol" # 2. Extract the gene mapping dataframe from the annotation: mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3. Convert probe-level data to gene-level expression data: gene_data = apply_gene_mapping(gene_data, mapping_df) # Optional: Print the shape of the mapped gene expression data for verification print("Gene expression data after mapping. Shape:", gene_data.shape) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Gender"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.