# Path Configuration from tools.preprocess import * # Processing context trait = "Bone_Density" cohort = "GSE56816" # Input paths in_trait_dir = "../DATA/GEO/Bone_Density" in_cohort_dir = "../DATA/GEO/Bone_Density/GSE56816" # Output paths out_data_file = "./output/preprocess/1/Bone_Density/GSE56816.csv" out_gene_data_file = "./output/preprocess/1/Bone_Density/gene_data/GSE56816.csv" out_clinical_data_file = "./output/preprocess/1/Bone_Density/clinical_data/GSE56816.csv" json_path = "./output/preprocess/1/Bone_Density/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available is_gene_available = True # Based on the series title indicating it is a gene expression study # Step 2: Identify data availability and define conversion functions # Observed keys in sample characteristics: # 0 -> ['gender: Female'] (only one unique value => not useful for analysis) # 1 -> ['bone mineral density: high BMD', 'bone mineral density: low BMD'] # 2 -> ['state: postmenopausal', 'state: premenopausal'] # 3 -> ['cell type: monocytes'] # The trait "Bone_Density" is mapped to key=1 with two unique values => binary variable trait_row = 1 # No explicit age information => not available age_row = None # Gender is constant ("Female") => not available gender_row = None # Define the data type conversion for the trait "Bone_Density" (binary: low=0, high=1) def convert_trait(value: str): parts = value.split(':', 1) if len(parts) < 2: return None raw_val = parts[1].strip().lower() if 'low' in raw_val: return 0 elif 'high' in raw_val: return 1 return None # Since age and gender are not available, no conversion functions are defined for them convert_age = None convert_gender = None # Step 3: Conduct initial filtering and save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None), ) # Step 4: Clinical feature extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features print(preview_df(selected_clinical_df, 5)) # Save the clinical dataframe to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # After examining the identifiers like '1007_s_at' and others, they are Affymetrix probe set IDs. # Therefore, they are not standard human gene symbols and require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping # 1. Decide which columns are the probe ID and gene symbol # From the annotation preview, "ID" matches the probe IDs in gene_data, and "Gene Symbol" contains gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 2. Convert probe-level measurements to gene-level measurements gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Preview the first few rows of the mapped gene_data print(gene_data.head()) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Gender"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.