# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE225328" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE225328" # Output paths out_data_file = "./output/preprocess/1/Breast_Cancer/GSE225328.csv" out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE225328.csv" out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE225328.csv" json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available # From the background ("Transcriptome profiling"), we consider this dataset as containing gene expression data is_gene_available = True # 2. Identify the corresponding rows for each variable in the sample characteristics dictionary # Here, both 'disease' and 'Sex' have only one unique value ("early-stage luminal breast cancer" and "female"), # so they offer no variability for association studies. Hence, we consider them unavailable. trait_row = None age_row = None gender_row = None # Define data conversion functions. # Since our identified rows are None, we won't actually use these functions, # but we still define them as requested. def convert_trait(value: str): return None def convert_age(value: str): return None def convert_gender(value: str): return None # 3. Conduct initial filtering of usability is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Because trait_row is None, we skip clinical feature extraction and saving.