# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE249377" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE249377" # Output paths out_data_file = "./output/preprocess/1/Breast_Cancer/GSE249377.csv" out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE249377.csv" out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE249377.csv" json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # From background info, this dataset provides transcriptomic (gene expression) data. # 2. Variable Availability and Data Type Conversion # After reviewing the sample characteristics, none of the rows provide distinct "Breast_Cancer" statuses, # nor do they provide "age" or "gender" information. The experiment uses only MCF7 (a breast cancer cell line), # which does not vary among samples in a way that is useful for association studies. trait_row = None age_row = None gender_row = None # Define conversion functions (they won't be used here, but we must still define them): def convert_trait(value: str) -> Optional[Union[float, int]]: return None # No trait row available, so always return None def convert_age(value: str) -> Optional[float]: return None # No age row available, so always return None def convert_gender(value: str) -> Optional[int]: return None # No gender row available, so always return None # 3. Save Metadata (initial filtering) # If trait_row is None, is_trait_available should be False is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is None, we do not perform clinical feature extraction and skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20])