# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE211378" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE211378" # Output paths out_data_file = "./output/preprocess/1/COVID-19/GSE211378.csv" out_gene_data_file = "./output/preprocess/1/COVID-19/gene_data/GSE211378.csv" out_clinical_data_file = "./output/preprocess/1/COVID-19/clinical_data/GSE211378.csv" json_path = "./output/preprocess/1/COVID-19/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide if the dataset likely has gene expression data # Based on background info about using nCounter technology and "Whole Blood profiling", # it is likely to be gene expression. Set is_gene_available to True. is_gene_available = True # 2. Determine availability for trait, age, and gender, and define conversion functions. # From the sample characteristics dictionary, there is no obvious row containing # COVID vs Healthy status, no age, and no gender information. Hence, these rows are None. trait_row = None age_row = None gender_row = None def convert_trait(value: str) -> Optional[float]: """ Convert trait value (COVID or Healthy) to binary: - 1 for COVID - 0 for Healthy - None if unknown """ # This dataset lacks explicit trait data; implement a placeholder logic. # If we had the row, we would parse it here. return None def convert_age(value: str) -> Optional[float]: """ Convert age-like value to float - None if unknown """ return None def convert_gender(value: str) -> Optional[int]: """ Convert gender to binary: - 0 for female - 1 for male - None if unknown """ return None # 3. Conduct initial filtering and save dataset metadata # Trait data is considered available if trait_row is not None. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Because trait_row is None, we skip clinical feature extraction. # No further steps. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = False") import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Gender"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.