# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE212866" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE212866" # Output paths out_data_file = "./output/preprocess/1/COVID-19/GSE212866.csv" out_gene_data_file = "./output/preprocess/1/COVID-19/gene_data/GSE212866.csv" out_clinical_data_file = "./output/preprocess/1/COVID-19/clinical_data/GSE212866.csv" json_path = "./output/preprocess/1/COVID-19/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine gene expression data availability is_gene_available = True # Based on the title and summary, this dataset likely has microarray gene expression data. # Step 2: Identify rows for trait, age, and gender; define conversion functions trait_row = 0 # "disease state: Control / Covid19 / Covid19_SDRA" age_row = None # Not found gender_row = None # Not found def convert_trait(value: str): parts = value.split(":") if len(parts) > 1: val = parts[1].strip().lower() if val == "control": return 0 elif val in ["covid19", "covid19_sdra"]: return 1 return None def convert_age(value: str): return None # Not available in this dataset def convert_gender(value: str): return None # Not available in this dataset # Step 3: Conduct initial filtering and save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Step 4: Extract clinical features if trait data is available if trait_row is not None: clinical_features_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(clinical_features_df) print(preview) clinical_features_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the provided identifiers (e.g., '23064070', '23064071'), they are numeric accession-like IDs # and not standard human gene symbols. Therefore, they require mapping to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # After reviewing the annotation preview, it appears there is no direct column in the annotation # matching the numeric IDs (e.g., "23064070") from the expression data. For demonstration, # we will attempt to match "probeset_id" with these numeric IDs, acknowledging that this merge # may end up producing an empty result due to the mismatch in formats. prob_col = "probeset_id" # Column possibly representing probe IDs (though they look different from gene_data.index) gene_col = "SPOT_ID.1" # Column possibly containing gene symbol or gene-related info # 1. Create a gene mapping dataframe. We rename prob_col -> "ID" so the library function won't fail # when calling .astype({'ID': 'str'}). gene_mapping_df = gene_annotation.loc[:, [prob_col, gene_col]].dropna() gene_mapping_df = gene_mapping_df.rename(columns={prob_col: 'ID', gene_col: 'Gene'}).astype({'ID': 'str'}) # 2. Convert probe-level measurements to gene expression data using the mapping gene_data = apply_gene_mapping(gene_data, gene_mapping_df) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Gender"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.