# Path Configuration from tools.preprocess import * # Processing context trait = "Cardiovascular_Disease" cohort = "GSE228783" # Input paths in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE228783" # Output paths out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE228783.csv" out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE228783.csv" out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE228783.csv" json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Decide if the dataset likely contains gene expression data is_gene_available = True # Based on the transcriptome context # Step 2: Determine variable availability trait_row = None # No cardiovascular disease info in sample characteristics age_row = None # No age info found gender_row = None # No gender info found # Prepare conversion functions. Though not used when the rows are None, we must define them. def convert_trait(x: str) -> Optional[float]: # Not used in this dataset return None def convert_age(x: str) -> Optional[float]: # Not used in this dataset return None def convert_gender(x: str) -> Optional[int]: # Not used in this dataset return None # Step 3: Conduct initial filtering and save to metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Since trait_row is None, skip clinical feature extraction