# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE63678" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE63678" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE63678.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE63678.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE63678.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 2: Dataset Analysis and Clinical Feature Extraction # 1. Determine if this dataset likely contains gene expression data is_gene_available = True # Based on the Affymetrix chip mention in the background info # 2. Identify rows for trait, age, and gender; define conversion functions # From the sample characteristics dictionary: # {0: ['tissue: cervix', 'tissue: endometrium', 'tissue: vulvar'], # 1: ['disease state: carcinoma', 'disease state: normal']} # # We consider row 1 (disease state) as representing the "Cervical_Cancer" trait # because it distinguishes "carcinoma" from "normal." trait_row = 1 age_row = None gender_row = None def convert_trait(val: str): if not val: return None parts = val.split(':') if len(parts) < 2: return None # Extract the value after the colon v = parts[1].strip().lower() if v == 'carcinoma': return 1 elif v == 'normal': return 0 return None def convert_age(val: str): # No age information is available in this dataset return None def convert_gender(val: str): # No gender information is available in this dataset return None # 3. Initial filtering: validate & save cohort info is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If we have trait data, extract clinical features if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview_res = preview_df(selected_clinical_df) print("Preview of extracted clinical data:", preview_res) # Save the clinical data to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Observing the gene identifiers (e.g., "1007_s_at", "1053_at", etc.), they appear to be Affymetrix probe IDs. # They are not direct human gene symbols and require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1. Decide which columns store the probe identifiers and which store the gene symbols. # From the annotation preview, the "ID" column matches the probe identifiers in gene_data.index. # And the "Gene Symbol" column contains the gene symbols. # 2. Get a gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Confirm the transformation is done print("Gene-level expression data shape:", gene_data.shape) print("First few gene symbols after mapping:", gene_data.index[:10].tolist()) # STEP 7 # 1. Normalize gene symbols in the gene_data, then save to CSV. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final validation and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait is available. Completed linking and QC steps." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file)