# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" import os import pandas as pd # 1. Identify the relevant subdirectory subdirectories = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] target_subdir = None for sd in subdirectories: if 'Cervical_Cancer' in sd or 'CESC' in sd: target_subdir = sd break if target_subdir is None: # No suitable data found for this trait; mark as completed print("No TCGA subdirectory found for the trait. Skipping.") else: cohort_dir = os.path.join(tcga_root_dir, target_subdir) # 2. Locate clinical and genetic data files clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print column names of clinical data print(clinical_df.columns) candidate_age_cols = ["age_at_initial_pathologic_diagnosis"] candidate_gender_cols = [] # Extract and preview age columns if candidate_age_cols: age_preview = preview_df(clinical_df[candidate_age_cols], n=5) print(age_preview) # Extract and preview gender columns if candidate_gender_cols: gender_preview = preview_df(clinical_df[candidate_gender_cols], n=5) print(gender_preview) age_col = "age_at_initial_pathologic_diagnosis" gender_col = None print("Selected age_col:", age_col) print("Selected gender_col:", gender_col) # 1. Extract and standardize the clinical features selected_clinical_df = tcga_select_clinical_features( clinical_df=clinical_df, trait=trait, age_col=age_col, gender_col=gender_col ) # (Optional) Save the selected clinical data selected_clinical_df.to_csv(out_clinical_data_file) # 2. Normalize gene symbols in the genetic data normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link the clinical and genetic data on sample IDs linked_data = selected_clinical_df.join(normalized_gene_df.T, how="inner") # 4. Handle missing values cleaned_df = handle_missing_values(linked_data, trait) # 5. Determine if the trait or demographic features are biased is_biased, final_df = judge_and_remove_biased_features(cleaned_df, trait) # 6. Final quality validation is_gene_available = not normalized_gene_df.empty is_trait_available = trait in final_df.columns is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=final_df, note="" ) # 7. If the dataset is usable, save the final dataframe if is_usable: final_df.to_csv(out_data_file)