# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE165004" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE165004" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE165004.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE165004.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE165004.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the metadata ("RNA expression"), we assume gene expression data is available. is_gene_available = True # 2. Variable Availability and Data Type Conversion # From the sample characteristics, there is no mention of Endometriosis status, age, or gender. # Thus all rows for these variables are considered unavailable. trait_row = None age_row = None gender_row = None # Define the required conversion functions (though they won't be used since rows are None). def convert_trait(value: str): # No data available; return None return None def convert_age(value: str): # No data available; return None return None def convert_gender(value: str): # No data available; return None return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) # This will be False _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip clinical feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns to use for mapping # Based on the annotation preview, we see that "ID" in the annotation matches the "ID" used in the gene expression data. # The column storing gene symbols in the annotation is "GENE_SYMBOL". probe_col = "ID" gene_symbol_col = "GENE_SYMBOL" # 2. Get a dataframe mapping probe IDs to gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # For observation, let's print the shape and the first 10 index entries of the mapped gene expression data. print("Mapped Gene Expression Data shape:", gene_data.shape) print("First 10 Gene Symbols in Mapped Expression Data:", gene_data.index[:10].tolist()) # STEP 7 import pandas as pd # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Since in Step 2 we determined that trait_row = None (no trait data), # we cannot proceed with linking or final analysis based on trait. is_trait_available = False if not is_trait_available: print("Trait data is not available -> skipping clinical-data linking and subsequent steps.") # 2. Perform final validation with an empty DataFrame and a placeholder is_biased=False # because the library requires these parameters in final mode. empty_df = pd.DataFrame() is_biased_placeholder = False is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # Gene data is available is_trait_available=False, is_biased=is_biased_placeholder, # Arbitrary value to satisfy the function requirement df=empty_df, note="No trait data available. Performed final validation with empty DataFrame." ) # 3. The dataset is not usable due to missing trait data, so do not save any final linked data. if is_usable: print("Unexpected: dataset marked usable despite missing trait. No final data saved.") else: print("Dataset is not usable (missing trait). No final data saved.") else: # This block would handle linking, missing values, etc. if trait were available. pass