# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE273630" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE273630" # Output paths out_data_file = "./output/preprocess/1/Epilepsy/GSE273630.csv" out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE273630.csv" out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE273630.csv" json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Gene Expression Data Availability # Based on the background info referencing a digital transcript panel (Nanostring) for inflammatory genes, # we conclude that it is likely gene expression data. is_gene_available = True # Step 2: Variable Availability and Data Type Conversion # From the sample characteristics dictionary, we only have {0: ['tissue: Peripheral blood cells']}. # No usable fields for trait, age, or gender are present, or they are constant for all samples. # Hence all rows are None. trait_row = None age_row = None gender_row = None # Define the conversion functions (though no real data is available to be converted). def convert_trait(value: str): return None def convert_age(value: str): return None def convert_gender(value: str): return None # Step 3: Save Metadata by initial filtering # Trait availability is determined by whether trait_row is None. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical Feature Extraction # Since trait_row is None, clinical data for the trait is not available. # Therefore, according to the instruction, we skip this substep. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These gene identifiers appear to be standard human gene symbols. print("requires_gene_mapping = False") import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # The CSV was saved with index=False in Step 2, so we reload it as a single-row DataFrame and assign the row index. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row index fixed at Step 7." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )