# Path Configuration from tools.preprocess import * # Processing context trait = "Fibromyalgia" cohort = "GSE67311" # Input paths in_trait_dir = "../DATA/GEO/Fibromyalgia" in_cohort_dir = "../DATA/GEO/Fibromyalgia/GSE67311" # Output paths out_data_file = "./output/preprocess/1/Fibromyalgia/GSE67311.csv" out_gene_data_file = "./output/preprocess/1/Fibromyalgia/gene_data/GSE67311.csv" out_clinical_data_file = "./output/preprocess/1/Fibromyalgia/clinical_data/GSE67311.csv" json_path = "./output/preprocess/1/Fibromyalgia/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available is_gene_available = True # From the background info, this is a gene expression dataset # 2. Identify row keys for trait, age, and gender, and define conversion functions # We see that sample characteristics dictionary at row 0 includes: # 'diagnosis: fibromyalgia', 'diagnosis: healthy control'. # This matches our trait-of-interest (Fibromyalgia) vs. Healthy control cohorts, so: trait_row = 0 # There's no apparent age or gender data in the dictionary, so: age_row = None gender_row = None # Define trait conversion function (binary: fibromyalgia=1, healthy=0) def convert_trait(value: str): if ':' in value: value = value.split(':', 1)[1].strip() val_lower = value.lower() if val_lower == 'fibromyalgia': return 1 elif val_lower == 'healthy control': return 0 return None # Age and gender are unavailable, so set the converting functions to None convert_age = None convert_gender = None # 3. Save metadata using initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save extracted clinical features preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The given identifiers look like numeric probe IDs rather than standard human gene symbols, # so they likely require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns in the gene_annotation dataframe match our probe identifiers and gene symbols. # From the preview, the "ID" column in gene_annotation corresponds to the same probe IDs # used in gene_data (both numeric, e.g. '7896736', '7896738'), and "gene_assignment" stores text containing gene symbols. # 2. Get a gene mapping dataframe: extract the "ID" column (probe ID) and "gene_assignment" column (gene text). mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col="ID", gene_col="gene_assignment" ) # 3. Apply the probe-to-gene mapping to convert probe-level data into gene-level expression. gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=mapping_df ) print("Gene-level expression data shape:", gene_data.shape) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable. if os.path.exists(out_clinical_data_file): try: tmp_df = pd.read_csv(out_clinical_data_file, header=0) # If successfully read, check the number of rows to rename their index properly. row_count = tmp_df.shape[0] if row_count == 1: tmp_df.index = [trait] elif row_count == 2: tmp_df.index = [trait, "Gender"] selected_clinical_df = tmp_df # Link the clinical and gene expression data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait and gender rows found; no age row." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) except (pd.errors.EmptyDataError, ValueError): # If file is present but empty or invalid, treat trait data as unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="Trait file is empty or invalid; linking and final dataset output are skipped." ) else: # If the clinical file does not exist at all, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data file was found; linking and final dataset output are skipped." )