# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE121291" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121291" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE121291.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - the dataset contains microarray mRNA data according to series title is_gene_available = True # 2. Variable Availability and Data Type Conversion # All samples are AML cell line - constant trait value trait_row = None # No age data available age_row = None # No gender data available since this is cell line data gender_row = None def convert_trait(x): # Convert AML status to binary # If contains "Acute Myeloid Leukemia", return 1 if isinstance(x, str) and "Acute Myeloid Leukemia" in x: return 1 return None def convert_age(x): pass def convert_gender(x): pass # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # The gene identifiers look like Affymetrix probe IDs (format: digit+_at/s_at/x_at) # These need to be mapped to gene symbols for analysis requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # 1. Observe columns - 'ID' for probe identifiers matching gene expression data, 'Gene Symbol' for gene symbols prob_col = 'ID' gene_col = 'Gene Symbol' # 2. Get mapping between probe IDs and gene symbols mapping = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Apply mapping to convert probe expression to gene expression gene_data = apply_gene_mapping(gene_data, mapping) # Preview the first few gene IDs to verify the mapping worked print("First 20 mapped gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create minimal linked data with just gene expression data linked_data = gene_data.T # Add trait column initialized to None linked_data[trait] = None # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Check for biased features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=linked_data, note="Dataset contains gene expression data from cell lines but lacks AML trait information needed for analysis." )