# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE161532" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE161532" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE161532.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - uses Affymetrix Human Transcriptome Array 2.0 for gene expression profiling is_gene_available = True # 2.1 Data Availability # trait - disease state from feature 4 contains AML status trait_row = 4 # age - age data available in feature 1 age_row = 1 # gender - gender data available in feature 2 gender_row = 2 # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None # All samples have AML, but we can distinguish primary vs secondary if "de novo" in x.lower(): return 0 # Primary AML elif any(t in x.lower() for t in ["secondary", "t-aml"]): return 1 # Secondary AML elif "aml" in x.lower(): return None # AML but type unknown return None def convert_age(x): if not isinstance(x, str): return None try: age = float(x.split(":")[1].strip()) return age except: return None def convert_gender(x): if not isinstance(x, str): return None x = x.lower() if "female" in x: return 0 elif "male" in x: return 1 return None # 3. Save initial metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features since trait_row is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the clinical data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # These identifiers appear to be microarray probe IDs from Agilent platform ending in "_st" # They are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Looking at the gene expression data from step 3, the IDs end with "_st" # Looking at the annotation data, the gene_assignment column contains gene names/symbols # However, we need to extract the symbols from the complex assignments # Extract probe IDs and gene assignments, and get mapping dataframe mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment') # Apply mapping to get gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata # Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined # based on cell subtypes (AMKL vs non-AMKL). is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)