# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE222616" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222616" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE222616.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE222616.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - it uses HuGene 1.0 ST Affymetrix arrays for gene expression profiling is_gene_available = True # 2.1 Data Availability # trait (AML status) is constant since all samples are from HL-60 AML cell line trait_row = None # Age is not available for cell line data age_row = None # Gender is not available for cell line data gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): # Not needed since trait data is not available return None def convert_age(value): # Not needed since age data is not available return None def convert_gender(value): # Not needed since gender data is not available return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Skip since trait_row is None (no clinical data available) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # Based on biomedical review: The identifiers appear to be numerical probe IDs from an array platform # rather than standardized human gene symbols. These would need to be mapped to gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Extract gene mapping information probe_col = "ID" gene_col = "gene_assignment" mapping_data = gene_annotation[[probe_col, gene_col]] mapping_data = mapping_data.dropna() mapping_data = mapping_data.rename(columns={probe_col: 'ID', gene_col: 'Gene'}) mapping_data['Gene'] = mapping_data['Gene'].apply(extract_human_gene_symbols) # Convert probe-level data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Normalize gene symbols to handle synonyms gene_data = normalize_gene_symbols_in_index(gene_data) # 1. Save normalized gene data gene_data.to_csv(out_gene_data_file) # Since no clinical data is available, use gene data as final dataset # Set is_biased=False since we cannot assess bias without trait data is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, # Cannot be biased without trait data df=gene_data, note="Only gene expression data available, no clinical information found" ) # Save gene data as final data since no clinical data to link if is_usable: gene_data.to_csv(out_data_file)