# Path Configuration from tools.preprocess import * # Processing context trait = "Acute_Myeloid_Leukemia" cohort = "GSE249638" # Input paths in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia" in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE249638" # Output paths out_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/GSE249638.csv" out_gene_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv" out_clinical_data_file = "./output/preprocess/3/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv" json_path = "./output/preprocess/3/Acute_Myeloid_Leukemia/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes - this is a transcriptomic profiling study of CD4+ T cells is_gene_available = True # 2.1 Data Availability & 2.2 Data Type Conversion # Trait (AML status) is available in Feature 1, using binary type trait_row = 1 def convert_trait(x): if not x or ':' not in x: return None value = x.split(':')[1].strip().lower() if 'acute myeloid leukemia' in value: return 1 elif 'healthy control' in value: return 0 return None # Age not available age_row = None convert_age = None # Gender not available gender_row = None convert_gender = None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs print("First 20 gene/probe identifiers:") print(gene_data.index[:20]) # The identifiers like '2824546_st' are probe IDs from Affymetrix microarray platform, not human gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # 2. Get mapping between probe IDs and gene symbols gene_annotation = gene_annotation.drop('ID', axis=1) # Drop the original ID column gene_annotation = gene_annotation.rename(columns={'probeset_id': 'ID'}) mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 3. Apply the mapping to convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping) # Preview first few genes and their expression values print("\nPreview of mapped gene expression data:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata # Note: Dataset contains gene expression data from AML cell lines. The trait "Acute_Myeloid_Leukemia" is defined # based on cell subtypes (AMKL vs non-AMKL). is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from AML cell lines. Trait defined as AMKL vs non-AMKL subtypes." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)