# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE60491" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE60491" # Output paths out_data_file = "./output/preprocess/3/Anxiety_disorder/GSE60491.csv" out_gene_data_file = "./output/preprocess/3/Anxiety_disorder/gene_data/GSE60491.csv" out_clinical_data_file = "./output/preprocess/3/Anxiety_disorder/clinical_data/GSE60491.csv" json_path = "./output/preprocess/3/Anxiety_disorder/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the background information, this dataset contains gene expression data from peripheral blood mononuclear cells is_gene_available = True # 2.1 Data Availability # Trait data (anxiety) needs to be inferred from neuroticism score trait_row = 12 # neuroticism data age_row = 0 # age data available gender_row = 1 # gender data available (male: 0/1) # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert neuroticism score to binary anxiety trait. High neuroticism (>1.0) is considered as having anxiety disorder""" if not value or 'neuroticism:' not in value: return None try: score = float(value.split(':')[1]) return 1 if score > 1.0 else 0 except: return None def convert_age(value): """Convert age string to integer""" if not value or 'age:' not in value: return None try: return int(value.split(':')[1]) except: return None def convert_gender(value): """Convert gender encoding where male:1 is kept as 1, male:0 means female so returns 0""" if not value or 'male:' not in value: return None try: return int(value.split(':')[1]) except: return None # 3. Save Metadata _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract Clinical Features selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview and save clinical data print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Check if the identifiers look like standard human gene symbols # From the sample data, we can see identifiers like "A1BG", "A1CF", "A2M" which are standard human gene symbols # Most identifiers follow the pattern of uppercase letters and numbers typical of HGNC symbols # There are no probe IDs (like Affymetrix probe IDs) that would need mapping requires_gene_mapping = False # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save normalized gene data gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data try: clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Determine if features are biased is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note="Gene expression data successfully mapped and linked with clinical features" ) # 6. Save linked data only if usable AND trait is not biased if is_usable and not is_trait_biased: linked_data.to_csv(out_data_file) except Exception as e: print(f"Error in data linking and processing: {str(e)}") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=True, df=pd.DataFrame(), note=f"Data processing failed: {str(e)}" )