# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" cohort = "GSE107754" # Input paths in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer" in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE107754" # Output paths out_data_file = "./output/preprocess/3/Bile_Duct_Cancer/GSE107754.csv" out_gene_data_file = "./output/preprocess/3/Bile_Duct_Cancer/gene_data/GSE107754.csv" out_clinical_data_file = "./output/preprocess/3/Bile_Duct_Cancer/clinical_data/GSE107754.csv" json_path = "./output/preprocess/3/Bile_Duct_Cancer/cohort_info.json" # Get file paths for SOFT and matrix files soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Create dictionary of unique values for each feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print the information print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in unique_values_dict.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on background info mentioning "whole human genome gene expression microarrays" is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 2 # Tissue type info in row 2 gender_row = 0 # Gender info in row 0 age_row = None # Age data not available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None if ":" not in x: return None value = x.split(": ")[1].lower() # Converting to binary based on bile duct cancer presence return 1 if "bile duct cancer" in value else 0 def convert_gender(x): if not isinstance(x, str): return None if ":" not in x: return None value = x.split(": ")[1].lower() return 0 if "female" in value else 1 if "male" in value else None # Age conversion function not needed since age data is not available convert_age = None # 3. Save Metadata # Initial filtering - trait data is available since trait_row is not None is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Extract features since trait_row is not None selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(selected_clinical) print("Selected clinical features preview:", preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs and some data preview to verify structure print("First 20 gene/probe IDs:") print(list(genetic_data.index[:20])) print("\nData preview:") preview_subset = genetic_data.iloc[:5, :5] print(preview_subset) requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file_path) # Preview column names and first few values preview = preview_df(gene_metadata) print("\nGene annotation columns and sample values:") print(preview) # 1. Identify the mapping columns # From the preview, 'ID' column contains identifiers matching gene expression data # 'GENE_SYMBOL' column contains the target gene symbols probe_col = 'ID' gene_col = 'GENE_SYMBOL' # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_metadata, probe_col, gene_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the mapped data print("\nGene expression data preview (first 5 genes, first 5 samples):") print(gene_data.iloc[:5, :5]) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge bias in features and remove biased ones trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Gene expression data from whole blood. Samples include SJIA patients treated with canakinumab/placebo and healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)