# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Bile_Duct_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Bile_Duct_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Bile_Duct_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Bile_Duct_Cancer/cohort_info.json" # Find the matching TCGA cohort for bile duct cancer cohort_dir = os.path.join(tcga_root_dir, "TCGA_Bile_Duct_Cancer_(CHOL)") # Get paths to clinical and genetic data files clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the clinical and genetic data clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Check data availability and record metadata is_gene_available = genetic_df.shape[0] > 0 and genetic_df.shape[1] > 0 is_trait_available = clinical_df.shape[0] > 0 and clinical_df.shape[1] > 0 validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Identify candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get correct file paths using CHOL code clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, "CHOL")) clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) # Preview age columns age_preview = preview_df(clinical_df[candidate_age_cols]) print("Age columns preview:", age_preview) # Preview gender columns gender_preview = preview_df(clinical_df[candidate_gender_cols]) print("Gender columns preview:", gender_preview) candidate_age_cols = [] candidate_gender_cols = [] # Cannot process preview since previous step output with column names is missing # Adding placeholder code structure for when columns are provided: clinical_preview = {} if len(candidate_age_cols) > 0: clinical_preview["Age Columns"] = {} if len(candidate_gender_cols) > 0: clinical_preview["Gender Columns"] = {} # Get correct file paths clinical_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, trait)) clinical_df = pd.read_csv(clinical_path, sep='\t', index_col=0) columns = list(clinical_df.columns) # Identifying age-related columns by looking for 'age' in column names candidate_age_cols = [col for col in columns if 'age' in col.lower()] # Identifying gender/sex-related columns by looking for 'gender' or 'sex' in column names candidate_gender_cols = [col for col in columns if ('gender' in col.lower() or 'sex' in col.lower())] # Preview candidates if they exist preview = {} if candidate_age_cols: age_df = clinical_df[candidate_age_cols] preview['age_preview'] = preview_df(age_df) if candidate_gender_cols: gender_df = clinical_df[candidate_gender_cols] preview['gender_preview'] = preview_df(gender_df) print(f"Candidate age columns: {candidate_age_cols}") print(f"Candidate gender columns: {candidate_gender_cols}") print("Preview of candidate columns:") print(preview) # Get age and gender columns from previous step age_candidates = {'age_at_initial_pathologic_diagnosis': [39, 63, 73, 82, 62], 'age': [39, 63, 73, 82, 62]} gender_candidates = {'gender': ['MALE', 'FEMALE', 'FEMALE', 'MALE', 'MALE']} # Select age column - both columns have same values, so use simpler name 'age' age_col = 'age' if 'age' in age_candidates else 'age_at_initial_pathologic_diagnosis' # Select gender column - only one candidate gender_col = 'gender' if gender_candidates else None print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Get the cohort directory path cohort_dir = os.path.join(tcga_root_dir, "TCGA_Bile_Duct_Cancer_(CHOL)") # Get paths to clinical and genetic data files clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load clinical data and examine columns for demographic features clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') age_cols = [col for col in clinical_df.columns if 'age' in col.lower()] gender_cols = [col for col in clinical_df.columns if 'gender' in col.lower()] age_col = 'age_at_initial_pathologic_diagnosis' if 'age_at_initial_pathologic_diagnosis' in age_cols else None gender_col = 'gender' if 'gender' in gender_cols else None # Extract standardized features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait=trait, age_col=age_col, gender_col=gender_col) # Load and process gene expression data genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) # Save normalized gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_genetic_df.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = pd.concat([selected_clinical_df, normalized_genetic_df.T], axis=1) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for bias in features is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate dataset and save cohort info note = "Dataset contains gene expression data and clinical features with trait, age, and gender information." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)