# Path Configuration from tools.preprocess import * # Processing context trait = "Bladder_Cancer" cohort = "GSE244266" # Input paths in_trait_dir = "../DATA/GEO/Bladder_Cancer" in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE244266" # Output paths out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE244266.csv" out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE244266.csv" out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE244266.csv" json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # The series title and summary suggest this is RNA/gene expression data for molecular subtypes is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 2 # clinical_stage_strat_factor can be used as binary trait age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert clinical stage to binary: 0 for T2 (less severe), 1 for T3/T4a (more severe)""" if pd.isna(x) or not isinstance(x, str): return None value = x.split(': ')[-1].strip() if 'T2' in value: return 0 elif 'T3' in value or 'T4a' in value: return 1 return None def convert_age(x): return None # Not used since age data unavailable def convert_gender(x): return None # Not used since gender data unavailable # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Extract mapping between gene IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert from probes to genes gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) # Preview results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Normalize gene symbols and save normalized gene data # Remove "-mRNA" suffix from gene symbols before normalization gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data and trait # First get selected clinical features using the extraction function from previous step selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Debug data structures before linking print("\nPre-linking data shapes:") print("Clinical data shape:", selected_clinical.shape) print("Gene data shape:", gene_data.shape) print("\nClinical data preview:") print(selected_clinical.head()) # Transpose gene data to match clinical data orientation gene_data_t = gene_data.T linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate data quality and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data from pancreatic cancer study. All samples are cancer cases (no controls)." ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)