# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_Fatigue_Syndrome" cohort = "GSE251792" # Input paths in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome" in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE251792" # Output paths out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE251792.csv" out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE251792.csv" out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE251792.csv" json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # Gene expression data appears available given this is a deep phenotyping study is_gene_available = True # Feature row identification trait_row = 2 # 'group' field contains trait data age_row = 1 # 'age' field contains age data gender_row = 0 # 'Sex' field contains gender data # Convert trait (Patient=1, Control=0) def convert_trait(x): if not isinstance(x, str): return None x = x.lower().split(': ')[-1].strip() if 'patient' in x: return 1 elif 'control' in x: return 0 return None # Convert age to float def convert_age(x): if not isinstance(x, str): return None try: return float(x.split(': ')[-1]) except: return None # Convert gender (Female=0, Male=1) def convert_gender(x): if not isinstance(x, str): return None x = x.lower().split(': ')[-1].strip() if 'female' in x: return 0 elif 'male' in x: return 1 return None # Save initial metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # Extract clinical features since trait data is available clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the clinical data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Row IDs like 'HCE000104' are Helicos BioSciences Corporation Probe IDs, not standard gene symbols # These need to be mapped to proper gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Get gene mapping using ID and EntrezGeneSymbol columns mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='EntrezGeneSymbol') # Apply gene mapping to convert probe values to gene expression values gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the resulting gene expression data print("Gene expression data shape:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from blood samples used to study chronic fatigue syndrome" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)