# Path Configuration from tools.preprocess import * # Processing context trait = "Chronic_Fatigue_Syndrome" cohort = "GSE39684" # Input paths in_trait_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome" in_cohort_dir = "../DATA/GEO/Chronic_Fatigue_Syndrome/GSE39684" # Output paths out_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/GSE39684.csv" out_gene_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/gene_data/GSE39684.csv" out_clinical_data_file = "./output/preprocess/3/Chronic_Fatigue_Syndrome/clinical_data/GSE39684.csv" json_path = "./output/preprocess/3/Chronic_Fatigue_Syndrome/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, this is microarray data from prostate tissue samples analyzing genes is_gene_available = True # 2. Clinical Feature Analysis # 2.1 Data Availability # From cohort in sample char row 1, we can infer cohort year represents CFS cases vs controls trait_row = 1 # No age information available age_row = None # No gender information available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(val): if not isinstance(val, str): return None # Cohort 2006 = CFS cases, 2012 = controls if "cohort:" in val: year = val.split(":")[1].strip() if year == "2006": return 1 # Cases elif year == "2012": return 0 # Controls return None def convert_age(val): # No age data return None def convert_gender(val): # No gender data return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # These identifiers appear to be custom probe IDs from a microarray platform (XXX-V3-70mer format) # and will need to be mapped to official gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) print("\nIMPORTANT NOTE: After reviewing the gene annotation data,") print("it is clear this dataset contains viral gene expression data (Parvovirus, Retrovirus etc.)") print("rather than human gene expression data. Therefore this dataset is not suitable for human trait analysis.") # Invalidate our previous assessment is_gene_available = False # Re-run validation with updated gene availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None )