# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE76347" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE76347" # Output paths out_data_file = "./output/preprocess/3/Cystic_Fibrosis/GSE76347.csv" out_gene_data_file = "./output/preprocess/3/Cystic_Fibrosis/gene_data/GSE76347.csv" out_clinical_data_file = "./output/preprocess/3/Cystic_Fibrosis/clinical_data/GSE76347.csv" json_path = "./output/preprocess/3/Cystic_Fibrosis/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The dataset contains nasal epithelial cell gene expression data from microarray analysis is_gene_available = True # 2.1 Data Availability # trait_row: Everyone has CF (key 0), so trait data is constant and not useful for association study trait_row = None # age_row: Age not recorded in characteristics age_row = None # gender_row: Gender not recorded in characteristics gender_row = None # 2.2 Data Type Conversion Functions (though not used since data unavailable) def convert_trait(x): if pd.isna(x): return None val = str(x).split(":")[-1].strip().upper() if "CF" in val: return 1 return None def convert_age(x): # Not used since age data not available return None def convert_gender(x): # Not used since gender data not available return None # 3. Save Metadata # is_trait_available is False since trait_row is None (constant trait value) is_trait_available = False if trait_row is None else True validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # These are not human gene symbols but probe IDs from the Illumina array platform # They need to be mapped to official human gene symbols for consistent analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Extract probe ID and gene symbol mapping data prob_col = 'ID' # Column containing probe identifiers matching genetic_df index # Function to extract gene symbol from gene_assignment string def extract_gene_symbol(text): if pd.isna(text) or text == '---': return None # Split by // and take the second element which contains the gene symbol parts = text.split('//') if len(parts) >= 2: return parts[1].strip() return None # Create mapping dataframe with proper gene symbols mapping_df = gene_metadata[['ID']].copy() mapping_df['Gene'] = gene_metadata['gene_assignment'].apply(extract_gene_symbol) mapping_df = mapping_df.dropna() # Apply mapping to convert probe data to gene data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the mapped gene expression data print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst few gene symbols:") print(gene_data.index[:10]) print("\nPreview of expression values:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Final validation - dataset not usable due to constant trait empty_df = pd.DataFrame() # Empty dataframe since no linked data possible is_biased = True # Explicitly mark as biased since trait is constant validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # No usable trait data is_biased=is_biased, df=empty_df, note="All subjects have CF (constant trait). Gene expression data saved but not suitable for trait association analysis." )