# Path Configuration from tools.preprocess import * # Processing context trait = "Depression" cohort = "GSE99725" # Input paths in_trait_dir = "../DATA/GEO/Depression" in_cohort_dir = "../DATA/GEO/Depression/GSE99725" # Output paths out_data_file = "./output/preprocess/3/Depression/GSE99725.csv" out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE99725.csv" out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE99725.csv" json_path = "./output/preprocess/3/Depression/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Dataset is about transcriptomic profiling from peripheral blood # 2.1 Data Row Numbers trait_row = 2 # MADRS (depression score) age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert MADRS score to binary depression status A: No/mild depression (0) B: Depression (1)""" if not isinstance(x, str): return None value = x.split(': ')[-1] if value == 'A': return 0 elif value == 'B': return 1 return None def convert_age(x): return None # Not used def convert_gender(x): return None # Not used # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Based on the presence of "A_19_P" in the identifiers, these are Agilent probe IDs # that need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify mapping columns # 'ID' column in gene_metadata contains the same Agilent probe IDs as in genetic_df # 'GENE_SYMBOL' column contains the target gene symbols prob_col = 'ID' gene_col = 'GENE_SYMBOL' # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview print("Gene expression data shape after mapping:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study of depression in obese patients before and after bariatric surgery" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)