# Path Configuration from tools.preprocess import * # Processing context trait = "Duchenne_Muscular_Dystrophy" cohort = "GSE13608" # Input paths in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy" in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE13608" # Output paths out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE13608.csv" out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv" out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv" json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Dataset contains muscle biopsy gene expression data # 2.1 Data Availability trait_row = 1 # Disease status in row 1 age_row = 2 # Age in row 2 gender_row = 3 # Gender in row 3 # 2.2 Data Type Conversion Functions def convert_trait(value): if not isinstance(value, str): return None # Extract value after colon if present if ':' in value: value = value.split(':')[1].strip() if 'Duchenne Muscular Dystrophy' in value: return 1 elif 'Normal' in value: return 0 return None def convert_age(value): if not isinstance(value, str): return None if ':' in value: value = value.split(':')[1].strip() if 'age' in value: try: age = int(value.replace('age', '').strip()) return age except: return None return None def convert_gender(value): if not isinstance(value, str): return None if ':' in value: value = value.split(':')[1].strip() if 'F' == value.strip(): return 0 elif 'M' == value.strip(): return 1 return None # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The identifiers in this dataset appear to be probe IDs from Affymetrix array # These need to be mapped to standard gene symbols for analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # The gene expression data uses probe IDs stored in the 'ID' column of gene_metadata # The gene symbols are stored in the 'Gene Symbol' column mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the mapped gene expression data print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)