# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE138297" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE138297" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE138297.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE138297.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE138297.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = False # Gene expression data measures IBS response, not suitable for Endometriosis study # 2.1 Data Availability trait_row = None # No Endometriosis data available in this IBS study age_row = 3 # Age data in years gender_row = 1 # Gender data encoded as binary # 2.2 Data Type Conversion Functions def convert_trait(value): return None # Not needed since trait data is unavailable def convert_age(value): if value is None: return None try: return float(value.split(': ')[-1].strip()) except: return None def convert_gender(value): if value is None: return None try: # Value is already encoded as we want (female=1, male=0) return int(value.split(': ')[-1].strip()) except: return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Skip since trait_row is None # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers are numeric IDs starting with 16650xxx # These are not standard human gene symbols and need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Get file paths and load initial gene expression data soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) gene_data = get_genetic_data(matrix_file) # Get gene mapping dataframe from annotation data # 'ID' column in metadata matches IDs in expression data # 'gene_assignment' contains gene symbols, but needs parsing mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # Apply gene mapping to expression data gene_data = apply_gene_mapping(gene_data, mapping_data) # Normalize gene symbols to official ones gene_data = normalize_gene_symbols_in_index(gene_data) # 1. Save normalized gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, # Changed to False since trait data isn't available is_biased=None, # Not applicable since trait isn't available df=None, # No linked data to provide note="Dataset contains gene expression data but lacks endometriosis trait information." )