# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE165004" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE165004" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE165004.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE165004.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE165004.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on series title and summary, this is an RNA expression study # 2.1 Data Availability trait_row = 0 # subject status/group indicates disease status age_row = None # Age not available gender_row = None # Gender not needed since all subjects are female based on study design # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait status to binary""" if not isinstance(value, str): return None value = value.lower().split(': ')[-1] if 'control' in value: return 0 elif 'patient' in value: # Both RPL and UIF patients are cases return 1 return None convert_age = None # Not needed since age data unavailable convert_gender = None # Not needed since all subjects are female # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These appear to be probe IDs (numbered 1-N) rather than human gene symbols # Looking at the data, we see simple numeric identifiers (1, 2, 3, etc) # which need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract probe-gene mapping using ID and GENE_SYMBOL columns # ID in gene_metadata matches numeric IDs in gene expression data # GENE_SYMBOL contains human gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Apply mapping to convert probe measurements to gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview mapped gene expression data print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few genes and their expression values:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # Rename the trait row to match expected column name linked_data = linked_data.rename(index={'0': trait}) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file) # Cannot proceed without seeing sample characteristics data and background information # Setting everything to None/False as a safe default is_gene_available = False trait_row = None age_row = None gender_row = None def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # Save metadata about dataset usability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on background info mentioning RNA expression and DEGs # 2.1 Data Availability # Feature 0 contains the trait info (Control vs RPL/UIF patients) trait_row = 0 # Age and gender data not available (not in characteristics and no mention of varying values) age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip().lower() if 'control' in value: return 0 elif 'rpl' in value or 'uif' in value: return 1 return None def convert_age(x): return None # Not used since age data not available def convert_gender(x): return None # Not used since gender data not available # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # Explicitly rename trait row from '0' to 'Endometriosis' linked_data = linked_data.rename(index={'0': 'Endometriosis'}) # 3. Handle missing values linked_data = handle_missing_values(linked_data, 'Endometriosis') # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Endometriosis') # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining RNA expression in RPL/UI patients vs controls." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)