# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE37837" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE37837" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE37837.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE37837.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE37837.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene expression data availability # Based on the background info mentioning "genome-wide expression analysis" using "whole human genome oligo microarray" is_gene_available = True # 2.1 Data availability # Trait can be inferred from tissue info in Feature 2 - comparing eutopic vs ectopic trait_row = 2 # Age is in Feature 0 age_row = 0 # Gender is in Feature 1 but only has one value (female) so not useful gender_row = None # 2.2 Data type conversion functions def convert_trait(x): if x is None: return None # Extract value after colon and strip whitespace value = x.split(':', 1)[1].strip() if ':' in x else x.strip() # Convert tissue type to binary - eutopic (0) vs ectopic (1) if 'eutopic' in value.lower(): return 0 elif 'ectopic' in value.lower(): return 1 return None def convert_age(x): if x is None: return None # Extract numeric age value try: return int(x.split(':', 1)[1].strip()) except: return None def convert_gender(x): # Not used since gender is constant return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the identifiers starting with "A_23_P" in the data, # these appear to be Agilent probe IDs rather than direct gene symbols. # They need to be mapped to official HGNC gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Map probe IDs to gene symbols using ID and GENE_SYMBOL columns mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Preview results print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = clinical_features.T # Transpose so features become columns linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file) # 1. Gene expression data availability is_gene_available = False # Conservative assumption without data # 2. Variable availability and conversion functions def convert_trait(x: str) -> Optional[int]: if pd.isna(x): return None value = str(x).lower() if 'normal' in value or 'control' in value: return 0 elif 'endometrios' in value: return 1 return None def convert_age(x: str) -> Optional[float]: if pd.isna(x): return None if ':' in str(x): value = x.split(':')[1].strip() try: return float(value) except: return None return None def convert_gender(x: str) -> Optional[int]: if pd.isna(x): return None value = str(x).lower() if 'female' in value or 'f' in value: return 0 elif 'male' in value or 'm' in value: return 1 return None # Without data we can't identify rows trait_row = None age_row = None gender_row = None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical feature extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of processed clinical data:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene expression data availability check # Based on background info mentioning "genome-wide expression analysis" and "whole human genome oligo microarray" is_gene_available = True # 2.1 Data availability # Trait: tissue type indicates eutopic vs ectopic endometrium, which can be used to identify endometriosis samples trait_row = 2 # Age: available in Feature 0 age_row = 0 # Gender: constant "female" in Feature 1, so not useful for association study gender_row = None # 2.2 Data type conversion functions def convert_trait(value: str) -> int: """Convert tissue type to binary endometriosis indicator""" if not value: return None value = value.split(": ")[1].lower() if "endometrioma_ectopic" in value: return 1 elif "autologous_eutopic" in value: return 0 return None def convert_age(value: str) -> float: """Convert age string to float""" if not value: return None try: return float(value.split(": ")[1]) except: return None # 3. Save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True ) # 4. Extract clinical features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=None, convert_gender=None ) # Preview the extracted features print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Re-extract clinical features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=2, convert_trait=lambda x: 1 if "endometrioma_ectopic" in str(x).lower() else 0 if "autologous_eutopic" in str(x).lower() else None, age_row=0, convert_age=lambda x: float(x.split(": ")[1]) if x and ":" in x else None ) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)