# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE51981" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE51981" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE51981.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE51981.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE51981.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, this is a gene expression microarray study based on the background info is_gene_available = True # 2.1 Data Row Identification trait_row = 1 # 'endometriosis/no endometriosis' contains trait info age_row = None # Age not available gender_row = None # Gender not available (assumed female since endometriosis study) # 2.2 Data Type Conversion Functions def convert_trait(value): if not isinstance(value, str): return None value = value.split(": ")[-1].strip() if value == "Endometriosis": return 1 elif value == "Non-Endometriosis": return 0 return None convert_age = None convert_gender = None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the processed clinical data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Get gene mapping dataframe # The 'ID' column stores probe identifiers matching gene expression data # The 'Gene Symbol' column stores human gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Preview results print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped data:") print(preview_df(gene_data)) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)