# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE75427" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE75427" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE75427.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE75427.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE75427.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Title indicates expression profiles, so gene expression data is likely available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait: Can be inferred from cell type field (Feature 0) trait_row = 0 # Age: Available in Feature 2 age_row = 2 # Gender: Available in Feature 1 but constant (all Female) gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: # Extract text after colon and strip whitespace value = value.split(':')[1].strip().lower() # If contains "normal endometrium", code as 0 (control) # Otherwise code as 1 (endometriosis) return 0 if 'normal endometrium' in value else 1 def convert_age(value: str) -> float: try: # Extract number from strings like "age: 37y" return float(value.split(':')[1].strip().replace('y','')) except: return None # 3. Save Metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=None, convert_gender=None ) # Preview the extracted features preview = preview_df(clinical_df) print("Preview of clinical features:") print(preview) # Save to CSV clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # These identifiers (A_19_P*) appear to be Agilent array probe IDs which need mapping to HGNC symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # ID and GENE_SYMBOL are the relevant columns for mapping mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL') # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the results to verify the mapping print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)