# Path Configuration from tools.preprocess import * # Processing context trait = "Esophageal_Cancer" cohort = "GSE77790" # Input paths in_trait_dir = "../DATA/GEO/Esophageal_Cancer" in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE77790" # Output paths out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE77790.csv" out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE77790.csv" out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE77790.csv" json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # Get gene expression data from matrix file genetic_data = get_genetic_data(matrix_file_path) # Create trait column from cell line information cell_lines = clinical_data.iloc[0] clinical_df = pd.DataFrame(index=cell_lines.index) clinical_df[trait] = cell_lines.str.contains('TE8|TE9').astype(int) # Normalize gene symbols and save to file normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # Save clinical data to file os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression changes in cancer cell lines after miRNA/siRNA treatments. " "Data quality evaluation indicates the trait distribution is biased.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.") # Set initial availability flags is_gene_available = False # Cannot determine without data # No data available yet trait_row = None age_row = None gender_row = None def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False # Since trait_row is None ) # Check gene expression data availability (GPL570 platform indicates gene expression data) is_gene_available = True # Data availability from sample characteristics trait_row = 2 # "source name: esophageal tumor or paired normal" age_row = 9 # "age (years): [numeric values]" gender_row = 8 # "sex: male/female" def convert_trait(val: str) -> Optional[int]: if val is None: return None val = val.split(":")[-1].strip().lower() if "tumor" in val: return 1 elif "normal" in val: return 0 return None def convert_age(val: str) -> Optional[float]: if val is None: return None val = val.split(":")[-1].strip() try: return float(val) except: return None def convert_gender(val: str) -> Optional[int]: if val is None: return None val = val.split(":")[-1].strip().lower() if "female" in val: return 0 elif "male" in val: return 1 return None # Save metadata for initial filtering _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) genetic_data.index = genetic_data.index.astype(str) # Convert probe IDs to strings # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # The indices appear to be just sequential numbers rather than any meaningful gene identifiers # This indicates the gene identifiers need to be mapped to proper gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Extract probe-gene mapping columns mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Define clinical data parameters based on sample characteristics trait_row = 1 # cell type row def convert_trait(x): if not isinstance(x, str): return None x = x.lower() return 1 if 'esophageal cancer' in x else 0 # Extract clinical features clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait ) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression in esophageal cancer cell lines. " "Data quality evaluation indicates potential trait distribution bias.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")