# Path Configuration from tools.preprocess import * # Processing context trait = "Head_and_Neck_Cancer" cohort = "GSE156915" # Input paths in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer" in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE156915" # Output paths out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE156915.csv" out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE156915.csv" out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE156915.csv" json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # The dataset contains whole transcriptome data which includes gene expression is_gene_available = True # 2. Variable Availability and Row Numbers # No explicit head and neck cancer trait information available in sample characteristics trait_row = None convert_trait = None # Age information not available age_row = None convert_age = None # Gender information not available gender_row = None convert_gender = None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These appear to be human gene symbols with some special cases # The format "1060P11.3 /// KIR3DP1" uses /// to separate aliases/alternative names # Most entries like A1BG, A1BG-AS1, A1CF etc. are standard HUGO gene symbols # No mapping needed as they are already in gene symbol format requires_gene_mapping = False # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # No need to do data linking and bias checking since trait data is missing dummy_data = pd.DataFrame([[0]], columns=['dummy']) is_biased = True # Dataset is biased by definition when trait data is missing note = "Dataset contains gene expression data but lacks trait information needed for association studies." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=dummy_data, note=note ) print(f"Dataset {cohort} contains no trait information and will not be used for analysis.")