# Path Configuration from tools.preprocess import * # Processing context trait = "Hypothyroidism" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Hypothyroidism/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json" # Get subdirectories from TCGA root directory tcga_subdirs = os.listdir(tcga_root_dir) tcga_subdirs = [d for d in tcga_subdirs if not d.startswith('.')] # Select thyroid cancer cohort as most relevant for hypothyroidism selected_dir = "TCGA_Thyroid_Cancer_(THCA)" cohort_dir = os.path.join(tcga_root_dir, selected_dir) # Get clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Print clinical data columns for inspection print("Clinical data columns:") print(clinical_df.columns.tolist()) # Part 1: Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Part 2: Preview existing clinical data # Print age columns preview age_preview = {} for col in candidate_age_cols: age_preview[col] = clinical_df[col].head().tolist() print("Age columns preview:", age_preview) # Print gender columns preview gender_preview = {} for col in candidate_gender_cols: gender_preview[col] = clinical_df[col].head().tolist() print("Gender columns preview:", gender_preview) # Selecting age column age_col = "age_at_initial_pathologic_diagnosis" # Contains direct age values, easier to interpret than days_to_birth # Selecting gender column gender_col = "gender" # Contains standard gender values # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col) selected_clinical_df.to_csv(out_clinical_data_file) # Normalize gene symbols and save normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df) normalized_genetic_df.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = pd.concat([selected_clinical_df, normalized_genetic_df.T], axis=1) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Judge whether features are biased and remove biased demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Final validation and save cohort info note = "Used thyroid cancer (THCA) data as thyroid disorders are closely related to hypothyroidism" is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)