# Path Configuration from tools.preprocess import * # Processing context trait = "Intellectual_Disability" cohort = "GSE100680" # Input paths in_trait_dir = "../DATA/GEO/Intellectual_Disability" in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE100680" # Output paths out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE100680.csv" out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE100680.csv" out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE100680.csv" json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, this dataset appears to contain gene expression data based on the background information # which mentions measuring APP expression levels and genome-wide effects is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (DS vs Control) can be inferred from field 3 (description) trait_row = 3 # Age is in field 2 age_row = 2 # Gender is not available gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): """Convert description to binary indicating if sample is DS (1) or control (0)""" if not isinstance(value, str): return None value = value.split(': ')[-1] if 'DS Clone' in value: return 1 elif 'Euploid Clone' in value: return 0 return None def convert_age(value): """Convert age string to numeric days""" if not isinstance(value, str): return None value = value.split(': ')[-1] if 'Day' in value: try: return float(value.replace('Day ', '')) except: return None return None def convert_gender(value): """Not used since gender data is not available""" return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract Clinical Features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_df(clinical_features) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These identifiers are ILMN (Illumina) probe IDs, not gene symbols # The ILMN_ prefix indicates they are from an Illumina microarray platform # They need to be mapped to official gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Drop rows where Symbol is null or contains phage/virus/bacteria gene_metadata = gene_metadata[gene_metadata['Symbol'].notna()] gene_metadata = gene_metadata[~gene_metadata['Symbol'].str.contains('phage|virus|bacteria', case=False, na=False)] # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Get gene mapping data from annotation # 'ID' column matches the ILMN probe IDs in expression data # 'Symbol' column contains the gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)