# Path Configuration from tools.preprocess import * # Processing context trait = "Intellectual_Disability" cohort = "GSE158385" # Input paths in_trait_dir = "../DATA/GEO/Intellectual_Disability" in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE158385" # Output paths out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE158385.csv" out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE158385.csv" out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE158385.csv" json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Yes, this appears to be gene expression data based on the background which studies effects in human amniocytes # 2. Variable Availability and Data Type Conversion # 2.1 Key identification trait_row = 2 # Karyotype indicates T21 (Trisomy 21) status which represents Intellectual Disability age_row = None # No age data available gender_row = None # Although gender info is embedded in karyotype, we can't reliably extract it since some patients could have multiple records # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None value = value.split(': ')[-1].strip() if '47' in value and 'T21' in value: # Trisomy 21 cases return 1 elif '46' in value and '2N' in value: # Normal karyotype return 0 return None convert_age = None # No age data convert_gender = None # No reliable gender data # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) print("Preview of clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # The identifiers in the gene expression data appear to be Affymetrix transcript cluster IDs (TC.....hg.1) # These are probe set IDs that need to be mapped to human gene symbols for analysis requires_gene_mapping = True # Identify all platform sections in the SOFT file with gzip.open(soft_file_path, 'rt') as f: platform_sections = [] current_platform = None for line in f: if line.startswith('^PLATFORM'): if current_platform: platform_sections.append(current_platform) current_platform = {'id': line.strip()} elif current_platform is not None and line.startswith('!Platform_title'): current_platform['title'] = line.strip() if 'human' in line.lower() or 'homo sapiens' in line.lower(): current_platform['is_human'] = True elif not line.startswith('^'): # End of platform section if current_platform: platform_sections.append(current_platform) current_platform = None if current_platform: # Handle last platform if exists platform_sections.append(current_platform) print("Found Platform Sections:") for platform in platform_sections: print(platform) # Look for human gene annotations with gzip.open(soft_file_path, 'rt') as f: human_data = [] is_human_section = False for line in f: if line.startswith('^PLATFORM'): is_human_section = False platform_id = line.strip() elif line.startswith('!Platform_title') and ('human' in line.lower() or 'homo sapiens' in line.lower()): is_human_section = True print(f"\nFound human platform section: {platform_id}") print(f"Platform title: {line.strip()}") elif is_human_section and not line.startswith(('!', '#', '^')): human_data.append(line) if human_data: # Convert human annotation data to dataframe human_annotation_df = pd.read_csv(io.StringIO(''.join(human_data)), sep='\t') print("\nColumn names:") print(human_annotation_df.columns.tolist()) print("\nData shape:", human_annotation_df.shape) print("\nPreview of the annotation data:") print(json.dumps(preview_df(human_annotation_df), indent=2)) else: print("\nNo human gene annotation data found in the SOFT file.") # Extract probe and gene mapping from annotation data prob_col = 'ID' # The gene expression data uses TC.....hg.1 identifiers, which match the ID column gene_col = 'gene_assignment' # This column contains gene symbol information # Get initial mapping between probes and genes mapping_df = get_gene_mapping(human_annotation_df, prob_col, gene_col) # Convert probe-level expression data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols to ensure consistency gene_data = normalize_gene_symbols_in_index(gene_data) # Preview the result print("\nGene expression data shape:", gene_data.shape) print("\nFirst few gene symbols:", gene_data.index[:5].tolist()) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)