# Path Configuration from tools.preprocess import * # Processing context trait = "Intellectual_Disability" cohort = "GSE200864" # Input paths in_trait_dir = "../DATA/GEO/Intellectual_Disability" in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE200864" # Output paths out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE200864.csv" out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE200864.csv" out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE200864.csv" json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on Series_title and Series_overall_design mentioning Affymetrix platform and gene expression is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait: Down Syndrome mentioned in title and summary, everyone has Down Syndrome based on background info trait_row = None # Everyone has intellectual disability (Down Syndrome), so constant feature # Age and gender: Not available in characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(x): return 1 # Would return 1 for all samples since all have Down Syndrome def convert_age(x): return None # Not used since age data not available def convert_gender(x): return None # Not used since gender data not available # 3. Save Metadata is_trait_available = True # Although trait_row is None, we know everyone has intellectual disability validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Skip since trait_row is None (constant feature) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These indices appear to be probe set IDs from Affymetrix microarray platform # They are not standard human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Create gene mapping from probe IDs to gene symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Since trait is constant (all Down Syndrome), create a clinical features dataframe of all 1's clinical_features = pd.DataFrame(1, index=gene_data.columns, columns=['trait']) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, 'trait') # Early exit if trait values are all NaN if linked_data['trait'].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'trait') # 5. Final validation and save metadata note = "Dataset contains gene expression data from pediatric patients with Down Syndrome. Since all samples have Down Syndrome, the trait is constant (all 1's)." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)