# Path Configuration from tools.preprocess import * # Processing context trait = "Intellectual_Disability" cohort = "GSE285666" # Input paths in_trait_dir = "../DATA/GEO/Intellectual_Disability" in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE285666" # Output paths out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE285666.csv" out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE285666.csv" out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE285666.csv" json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression availability - Yes, it uses Affymetrix exon arrays is_gene_available = True # 2.1 Get row numbers for clinical features trait_row = 0 # disease state row age_row = None # age not available gender_row = None # gender not available # 2.2 Define conversion functions def convert_trait(value: str) -> int: """Convert disease state to binary: 1 for Williams syndrome, 0 for control""" if pd.isna(value) or value is None: return None if ':' in value: value = value.split(':')[1].strip().lower() if 'williams syndrome' in value: return 1 elif 'unaffected' in value or 'control' in value: return 0 return None def convert_age(value: str) -> float: """Placeholder function since age is not available""" return None def convert_gender(value: str) -> int: """Placeholder function since gender is not available""" return None # 3. Save metadata about dataset usability is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features since trait data is available clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview results preview_result = preview_df(clinical_features) print("Preview of extracted clinical features:") print(preview_result) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These appear to be probe IDs from a microarray platform, not standard human gene symbols # Examining the numeric format and length pattern confirms they need mapping requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Display non-NaN value counts for key gene identifier columns print("\nNumber of non-NaN values in key columns:") for col in ['ID', 'gene_assignment']: print(f"{col}: {gene_metadata[col].notna().sum()}") # Preview rows with actual gene information print("\nPreview of rows with gene information:") gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head() print(json.dumps(preview_df(gene_rows), indent=2)) # Get gene mapping dataframe mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') mapping_data = mapping_data[mapping_data['Gene'] != '---'] # Extract gene symbols from gene_assignment strings def extract_gene_symbol(text): if pd.isna(text): return None parts = text.split('//') if len(parts) >= 2: return parts[1].strip() return None mapping_data['Gene'] = mapping_data['Gene'].apply(extract_gene_symbol) mapping_data = mapping_data.dropna() # Apply gene mapping to convert probe data to gene data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print info about the converted data print("Shape of probe-level data:", genetic_data.shape) print("Shape of gene-level data:", gene_data.shape) print("\nFirst few genes:") print(gene_data.index[:10].tolist()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)