# Path Configuration from tools.preprocess import * # Processing context trait = "Intellectual_Disability" cohort = "GSE98697" # Input paths in_trait_dir = "../DATA/GEO/Intellectual_Disability" in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE98697" # Output paths out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE98697.csv" out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE98697.csv" out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE98697.csv" json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes - the dataset contains both coding and non-coding gene expression data according to title and design is_gene_available = True # 2.1 Data Row Numbers # Trait: Not directly given but subtype shows Down syndrome cases, can infer from aml subtype trait_row = 2 # Age not available age_row = None # Gender not available gender_row = None # 2.2 Type Conversion Functions def convert_trait(x): # Extract value after colon if ':' in x: x = x.split(':', 1)[1].strip() # Convert to binary - 1 for Down syndrome AMKL, 0 for other types if 'Down-syndrome' in x: return 1 elif 'aml' in x.lower(): # Other AML types return 0 return None def convert_age(x): return None # Not used as age is not available def convert_gender(x): return None # Not used as gender is not available # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_df(clinical_features) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # Observe that the identifiers are just '1', '2', '3' etc # These are numeric indices and not standard gene symbols # Therefore we need to map these IDs to proper gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Display non-NaN value counts for key gene identifier columns print("\nNumber of non-NaN values in key columns:") for col in ['ID', 'FINAL_SYMBOL']: print(f"{col}: {gene_metadata[col].notna().sum()}") # Preview rows with actual gene information print("\nPreview of rows with gene information:") gene_rows = gene_metadata[gene_metadata['FINAL_SYMBOL'].notna()].head() print(json.dumps(preview_df(gene_rows), indent=2)) # Extract the gene mapping data # From observing the data, we need to map numeric 'ID' to 'FINAL_SYMBOL' mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='FINAL_SYMBOL') # Apply the gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Display the shape of the gene expression data before and after mapping print(f"Shape before mapping (probes × samples): {genetic_data.shape}") print(f"Shape after mapping (genes × samples): {gene_data.shape}") # Preview the first few gene symbols print("\nFirst few gene symbols:") print(gene_data.index[:5].tolist()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)