# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_stones" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Kidney_stones/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json" # Find relevant trait directory trait_dir = 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)' cohort_dir = os.path.join(tcga_root_dir, trait_dir) # Get clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate demographic columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Load clinical data file tcga_brca_dir = os.path.join(tcga_root_dir, 'BRCA') clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_brca_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Preview age columns age_preview = clinical_df[candidate_age_cols].head() print("\nAge columns preview:", preview_df(age_preview)) # Preview gender columns gender_preview = clinical_df[candidate_gender_cols].head() print("\nGender columns preview:", preview_df(gender_preview)) import pandas as pd # Get file paths cohort_dir = os.path.join(tcga_root_dir, "KIRC") clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load clinical data to get column names clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0) # Define candidate columns based on examination of clinical data columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head().tolist() # Preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head().tolist() # Examined candidate demographic columns from previous step output missing candidate_age_cols = [] candidate_gender_cols = [] # Cannot preview data since previous output is missing # Will need to wait for output containing clinical dataset column names before continuing age_col = None gender_col = None print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Find relevant trait directory trait_dir = 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)' cohort_dir = os.path.join(tcga_root_dir, trait_dir) # Get clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Print column names only per the instructions print("\nIdentified candidate columns:") print(f"candidate_age_cols = {candidate_age_cols}") print(f"candidate_gender_cols = {candidate_gender_cols}") # Load clinical data clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, 'KIRP/')) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Preview age and gender data age_preview = preview_df(clinical_df[candidate_age_cols]) print("\nAge columns preview:") print(age_preview) gender_preview = preview_df(clinical_df[candidate_gender_cols]) print("\nGender columns preview:") print(gender_preview) # Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get available cohorts available_cohorts = os.listdir(tcga_root_dir) # Get kidney-related cohorts kidney_cohorts = [c for c in available_cohorts if "TCGA_Kidney" in c] if kidney_cohorts: # Get cohort directory path cohort_dir = os.path.join(tcga_root_dir, kidney_cohorts[0]) # Get file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # Read clinical data clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') # Preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head().tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head().tolist() print("Gender columns preview:", gender_preview) else: print("No kidney-related cohorts found") # Choose age column by inspecting the previews # 'age_at_initial_pathologic_diagnosis' has direct age values whereas 'days_to_birth' needs conversion age_col = 'age_at_initial_pathologic_diagnosis' # Choose gender column by inspecting the previews # 'gender' column has standard values MALE/FEMALE gender_col = 'gender' # Print chosen columns print(f"Chosen age column: {age_col}") print(f"Chosen gender column: {gender_col}") # Get trait information from sample IDs using TCGA ID format clinical_df['Kidney_stones'] = clinical_df.index.map(tcga_convert_trait) # Extract standardized clinical features selected_clinical_df = tcga_select_clinical_features(clinical_df, 'Kidney_stones', age_col, gender_col) # Normalize gene symbols and save gene data normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1, join='inner') # Handle missing values systematically linked_data = handle_missing_values(linked_data, 'Kidney_stones') # Judge if features are biased and remove biased demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Kidney_stones') # Validate data quality and save cohort info note = "Using kidney papillary cell carcinoma (KIRP) data from TCGA for kidney stone analysis." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA_KIRP", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)