# Path Configuration from tools.preprocess import * # Processing context trait = "LDL_Cholesterol_Levels" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/TCGA.csv" out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json" # Cannot proceed with column identification without first having access to # the column names from the previous step's output # For now, define empty candidates candidate_age_cols = [] candidate_gender_cols = [] preview_dict = {} preview_dict # 1. From the subdirectories list, none contain terms directly related to LDL cholesterol or lipid levels # Therefore, we need to examine a proxy tissue/condition most related to cholesterol metabolism # The liver is the primary organ for cholesterol metabolism, so we'll use liver cancer data cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Liver_Cancer_(LIHC)') # 2. Get the clinical and genetic data file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'year_of_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Use LIHC (Liver Cancer) data cohort_dir = os.path.join(tcga_root_dir, "TCGA_Liver_Cancer_(LIHC)") # Get clinical data path clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Preview age columns age_preview = {} for col in candidate_age_cols: if col in clinical_df.columns: age_preview[col] = clinical_df[col].head(5).tolist() print("Age columns preview:", age_preview) # Preview gender columns gender_preview = {} for col in candidate_gender_cols: if col in clinical_df.columns: gender_preview[col] = clinical_df[col].head(5).tolist() print("\nGender columns preview:", gender_preview) # Information from previous step # Dictionaries containing sample values from candidate columns age_candidates = {'age_at_initial_pathologic_diagnosis': [63, 53, 69, 65, 59], 'age_began_smoking_in_years': ['[Not Applicable]', '[Not Available]', '[Not Available]', '[Not Available]', '[Not Applicable]']} gender_candidates = {'gender': ['FEMALE', 'FEMALE', 'FEMALE', 'MALE', 'MALE']} # Select age column - choose 'age_at_initial_pathologic_diagnosis' as it has valid numeric values age_col = 'age_at_initial_pathologic_diagnosis' if 'age_at_initial_pathologic_diagnosis' in age_candidates and all(isinstance(x, (int, float)) for x in age_candidates['age_at_initial_pathologic_diagnosis']) else None # Select gender column - choose 'gender' if it contains valid gender values gender_col = 'gender' if 'gender' in gender_candidates and all(isinstance(x, str) and x.upper() in ['MALE', 'FEMALE'] for x in gender_candidates['gender']) else None # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features # First reload data with correct separator clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Use days_to_birth as a source for age calculation since LDL is a continuous trait age_values = (-clinical_df['days_to_birth']/365).round() age_values = age_values.fillna(age_values.mean()).astype(int) clinical_df['age_at_initial_pathologic_diagnosis'] = age_values selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col) # 2. Normalize gene symbols normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) # Save normalized gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for biased features and remove biased demographic features is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA_LIHC", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=cleaned_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) cleaned_data.to_csv(out_data_file) print(f"Data saved to {out_data_file}") else: print("Data quality validation failed. Dataset not saved.") # 1. Extract and standardize clinical features # First reload data with correct separator clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # Define demographic columns based on inspection from previous steps age_col = 'age_at_initial_pathologic_diagnosis' gender_col = 'gender' # Calculate age from days_to_birth for more accuracy age_values = (-clinical_df['days_to_birth']/365).round() age_values = age_values.fillna(age_values.mean()).astype(int) clinical_df[age_col] = age_values selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col) # 2. Normalize gene symbols normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) # Save normalized gene data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1) # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Check for biased features and remove biased demographic features is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA_LIHC", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=cleaned_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) cleaned_data.to_csv(out_data_file) print(f"Data saved to {out_data_file}") else: print("Data quality validation failed. Dataset not saved.")